

New Synthetic Approach to Enantiopure Bicyclic Sulfonium Salts: Swainsonine Analogues

Vanda Cerè,* Salvatore Pollicino, and Alfredo Ricci

Department of Organic Chemistry, "A. Mangini"-University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy

cere@ms.fci.unibo.it

Received August 2, 2002

Abstract: The enantioselective synthesis of bicyclic sulfonium salts 8 or 9, thioanalogues of swainsonine derivatives, is described. The synthetic strategy is based on a stereo- and regiospecific transannular cyclization reaction of ninemembered cyclic sulfides, mediated by Me₃SiI or carried out under acidic catalysis.

Glycosidase enzymes play an important role in the biochemical processes,¹ and their abnormal activity leads to serious diseases. The compounds 1-deoxy-nojirimycin (A), castanospermine (B), and swainsonine (C), depicted in Figure 1, are among the most important therapeutic agents used as glycosidase inhibitors.²

As piperidine analogues of glucopyranose, these compounds inhibit several glucosidases and display antidiabetic and antiviral activities, including activity against HIV viruses.³ In addition their ability to reduce tumor cell metastasis is well documented.⁴ Glycosidases and their inhibitors have attracted the interest of many groups of researchers. In particular the development of new synthetic methods and the studies directed to understand the role played by molecular shape and charge on biological activity remain important problems to be investigated.⁵

Many strategic routes for the synthesis of swainsonine derivatives are reported in the literature but only a few examples of analogous compounds in which the bridgehead nitrogen atom is replaced by a sulfur atom have been described so far. The increasing interest toward these sulfonium salts stems from their ability to create electrostatic interactions: the effect of a positively charged

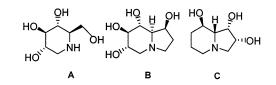


FIGURE 1.

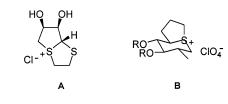


FIGURE 2.

moiety, such as a sulfonium ion in a bicyclic polyhydroxylated system, is likely to increase its potency as a glycosidase inhibitor since the charge separation would mimic the putative oxonium ion transition state that is generated during the carbohydrate hydrolysis by glycosidases. Moreover these sulfur-based compounds exhibit high water solubility and good stability, features of major importance for their evaluation as glycosidase inhibitors.

Several years ago a bicyclic [3.3.0] sulfonium salt was synthesized and tested as a glycosidase inhibitor by Grierson (Figure 2, A).⁶

More recently Pinto et al.⁷ (Figure 2, B) described an interesting bicyclic [4.3.0] sulfonium salt derivative that can act as a mimic of castanospermine. All these authors outlined, however, the scarcity of polyhydroxylated cyclic sulfonium salts previously reported in the literature.⁸ Moreover, in the last years numerous synthetic and biological studies related to Salacinol and Kotalanol,9 natural inner-sulfonium salts of therapeutic relevance extracted from the Salacia Reticulata, have been reported and successfully adopted in traditional Ayurvedic medicine for the treatment of diabetes.

All these findings prompted us to direct our efforts on a new synthetic strategy aimed to synthesize a range of bicyclic sulfonium salts, thioanalogues of the swainsonine derivatives, which might constitute new therapeutic targets.

Previous work from this laboratory has described the transannular cyclization of medium-sized sulfurated compounds under acidic conditions by interaction be-

⁽¹⁾ Dwek, R. A. Chem. Rev. 1996, 96, 683.

⁽²⁾ Elbein, A. D. Crit. Rew. Biochem. 1984, 16, 21. Fellows, L. E. Pestic. Sci. 1986, 17, 602. Fellows, L. E.; Fleet, G. W. J. Natural Products Isolation; Wagman, G. H., Cooper, R., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; pp 539-559. Elbein, A. D.; Molyneux, R. J. Alkaloids: Chemical and Biological Perspectives, Pelletier, S. W., Ed.; Wiley: New York, 1987; Vol. 5, pp 1-54. Fleet, G. W. J.; Fellows, L. E.; Winchester, B. Bioactive Compounds from Plants; Ciba Foundation Symposium 154; Wiley: Chichester, UK, 1990; pp 112-125. Stutz, A. E. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, Wiley-VCH: New York, 1999.

⁽³⁾ Karpas, A.; Fleet, G. W. J.; Dwek, R. A.; Fellows, L. E.; Tyms, A. S.; Petursson, S.; Namgoong, S. K.; Ramsden, N. G.; Jacob, G. S.; Rademacher, T. W. *Proc. Natl. Acad. Sci. U.S.A.* **1988**, *85*, 9229. Montefiori, D. C.; Robinson, W. E.; Mitchell, W. M. *Proc. Natl. Acad.* Sci. U.S.A. 1988. 85. 9248.

⁽⁴⁾ Mohla, S.; White, S.; Grzegorzewski, K.; Nielsen, D.; Dunston,
G.; Dickson, L.; Cha, J. K.; Asseffa, A.; Olden, K. Anticancer Res. 1990,
10, 1515. Goss, P. E.; Baptiste, J.; Fernandes, B.; Baker, M.; Dennis,
J. W. Cancer Res. 1994, 54, 1450.
(5) Heightman, T. D.; Vasella A. T. Angew. Chem., Int. Ed. 1999,

^{38. 750.}

⁽⁶⁾ Siriwardena, A. H.; Chiaroni, A.; Riche, C.; El-Daher, S.; Winchester, B.; Grierson, D. S. J. Chem. Soc., Chem. Commun. 1992, 1531

⁽⁷⁾ Svansson, L.; Johnston B. D.; Gu, J. H.; Patrick, B.; Pinto B. M. J. Am. Chem. Soc. 2000, 122, 10769.

⁽⁸⁾ Urban, F. J.; Breitenbach, R.; Vincent, L. A. J. Org. Chem. 1990, 55, 3670. Matsuyama, H.; Nakamura, T.; Kamigata, N. J. Org. Chem. **1989**, 54, 5218. Tani, K.; Otsuka, S.; Kido, M.; Miura, I. J. Am. Chem. Soc. **1980**, 102, 7394.

⁽⁹⁾ Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.; Yamahara, J.; Tanabe, G.; Muraoka, O. Tetrahedron Lett. 1997, 38, 8367. Yoshikawa, M.; Murakami, T.; Yashiro, K.; Matsuda, H. Chem. Pharm. Bull. 1998, 46, 1339. Ghavami, A.; Johnston, B. D.; Pinto, B. M. J. Org. Chem. 2001, 66, 2312. Yuasa, H.; Takada, J.; Hashimoto, H. Bioorg., Med. Chem. Lett. 2001, 11, 1137. Masayuki, M.; Morikawa, T.; Matsuda, H.; Tanabe, G.; Muraoka, O. Bioorg., Med. Chem. 2002, 10, 1547.

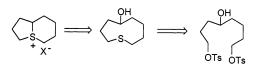
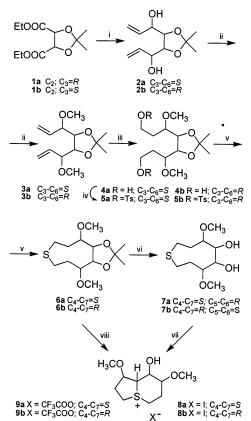



FIGURE 3. Retrosynthetic plan.

SCHEME 1^a

^a Reagents and conditions: (i) Dibal-H, Zn(CH=CH₂)₂, ref 12 (83%); (ii) NaH, MeI (98%); (iii) BH₃·Me₂S, H₂O₂, NaOH (65%); (iv) pTsCl, Py (95%); (v) Na₂S·9H₂O (65%); (vi) 0.1 N H₂SO₄, 30 min, 50 °C (98%); (vii) Me₃SiI (90%); (viii) CF₃COOH in CH₃CN, 2 h, 90°C (90%).

tween the S atom and a double bond.¹⁰ Further on we have reported that a transannular nucleophilic substitution by a sulfur atom on a carbon bearing an hydroxy group also can be achieved, under very mild conditions, by means of the $Me_3SiI.^{11}$ With these results in hand, we envisioned a simple new retrosynthetic plan to synthesize a thio-swainsonine analogue by using as a key step in the synthesis a stereo- and regiospecific transannular cyclization of a suitable thiacyclononane derivative (Figure 3).

To address this problem a suitable and straightforward approach to a configurationally homogeneous cyclic sulfide $\mathbf{6}$ was needed (Scheme 1). Thus, starting from diethyl L- and D-tartrate, enantiopure inexpensive and easily available compounds from the natural pool, we obtained

the isopropylidene diene derivatives **2a**,**b**¹² (Scheme 1; compounds deriving from the L-configuration are noted as a, and those deriving from the D-configuration are noted as **b**) which were di-O-methylated under standard conditions with NaH and CH₃I, to give, in 98% yield, **3a**,**b**. Hydroxylation of the two double bonds by means of BH₃·Me₂S followed by treatment with alkaline hydrogen peroxide led to 4a,b in 65% yield. The ditosyl derivatives 5a,b obtained from 4a,b, using p-TsCl in pyridine (95%), gave the thiacyclononane derivatives 6a,b (65%) by intramolecular cyclization with $Na_2S \cdot 9H_2O$. The thiacyclononane derivatives **7a**,**b**, obtained in 98% yield, using 0.1 N H₂SO₄ for 30 min at 50 °C, were submitted to Me₃SiI-mediated¹¹ transannular nucleophilic substitution leading in 90% yield to the bicyclic systems 8a,b. To avoid in iodide **8a,b** possible equilibration with a form deriving from the five-membered ring-opening and darkening after long-term storage, bicyclic systems bearing nonnucleophilic counterions in the sulfonium salts were taken into consideration as well. Accordingly compounds **9a,b** were obtained in good yields (90%) by treatment of 6a,b with CF₃COOH in CH₃CN for 2 h at 90 °C (CF₃- SO_3H and H_2SO_4 also can be used).

Compounds **8** and **9**, obtained in both enantiomeric pure forms, can be considered di-*O*-methylated thia mimics of swainsonine.

In conclusion we have developed a conceptually new approach that should, at least in part, overcome the difficulties often encountered in the synthesis of functionalized thioswainsonine. A good asset of this method that nicely complements the previously reported strategies^{6,7} lies in the fact that by using the nine-membered thiacyclo derivatives **6a**, **b**, the presence of a C_2 axis and the complete regio- and stereoselectivity of the transannular substitution leads to a single configurationally homogeneous product irrespective of the fact that the sulfur atom would attack C₅ or C₆. Moreover, the reduced number of steps and the easy availability of the starting materials make this route highly practical and suitable to be applied in a more general way to the synthesis of new thionia derivatives as compounds with potential interesting biological activities. An extensive study ongoing in our laboratory is aimed at the synthesis of new eight- and nine-membered polyhydroxylated sulfurated cycles.

Experimental Section

All moisture-sensitive reactions were performed in flame-dried glassware equipped with rubber septa under positive pressure of dry nitrogen. Organic extracts were dried over CaSO₄. Melting points are uncorrected. Preparative flash chromatographic experiments were performed with ICN Silica gel 230–400 mesh. For TLC precoated glass plates were used (Stratochrom SIF₂₅₄, 0.25 mm thick) and the spots were developed at 110 °C with an aqueous solution of (NH₄)₆Mo₇O₂₄ (2.5%) and (NH₄)₄Ce(SO₄)₄ (1%) in 10% H₂SO₄ or 0.1 M KMnO₄/1 M H₂SO₄ 1/1. Yields are for isolated compounds. Unless specified otherwise, ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively, in CDCl₃ as solvent. Chemical shifts are in ppm downfield of TMS and signal multiplicities were established by DEPT experiments. Signal assignments, if necessary, were elucidated by decoupling ¹H NMR. Optical rotations were measured at 589 nm. Infrared spectra were recorded on a FT IR spectrophotometer. Mass spectra were recorded by using electron impact at

⁽¹⁰⁾ Calderoni, C.; Cerè, V.; Pollicino, S.; Sandri, E.; Fava, A. *J. Org. Chem.* **1980**, *45*, 2641. Cerè, V.; Paolucci, C.; Pollicino, S.; Sandri, E.; Fava, A. *J. Org. Chem.* **1982**, *47*, 2861.

Fava, A. J. Org. Chem. 1982, 47, 2861.
 (11) Cerè, V.; Pollicino, S.; Fava, A. Tetrahedron 1996, 52, 5989.
 Cerè, V.; Peri, F.; Pollicino, S. J. Org. Chem. 1997, 62, 8572.

70 eV (EIMS), or electron spray ionization (ESIMS). CH_3CN was distilled from CaH_2 and pyridine from KOH. NaI was heated at 100 °C and 0.1 mmHg for 48 h. Light petroleum had bp 35–60 °C.

(+)-(4S,5S)-4,5-Bis[(1S)-1-methoxy-2-propenyl]-2,2-dimethyl-1,3-dioxolane (3a). The suspension of 1.0 g (22.3 mmol) of 50% NaH, previously washed with light petroleum under N₂, was treated with 4.8 g (22.3 mmol) of (-)-(15)-1-{(4S,5S)-5-[(1S)-1-hydroxy-2-propenyl]-2,2-dimethyl-1,3-dioxolan-4-yl}-2-propen-1-ol¹² (2a) dissolved in 180 mL of THF. After 10 min 2.8 mL (44.6 mmol) of CH₃I was added, and the reaction mixture was stirred for 1 h. Then 1.0 g of 50% NaH and 2.8 mL of CH₃I were added again, using the same procedure. The residue, obtained by evaporation of the solvent, was treated with 20 mL of H₂O and extracted three time with 30 mL of CH₂Cl₂. The evaporation of the dried organic layer gave a crude product that was purified by flash chromatography (SiO2-CH2Cl2/EtOAc 100/1) obtaining 5.4 g (98%) of the title compound **3a** as a colorless oil. ¹H NMR: δ 5.85–5.63 (m, 2H), 5.48–5.16 (m, 4H), 3.90 (m, 2H), 3.59 (d, 2H, J = 7.49 Hz), 3.27 (s, 6H), 1.33 (s, 6H). ¹³C NMR: δ 134.3, 120.2, 83.9, 80.0, 56.6, 27.0. $[\alpha]_D^{26}$ +10.1 (CHCl₃, c 1.020). IR (neat): 2986, 2937, 2894, 2823, 1643, 1458, 1424, 1380, 1370, 1242, 1216, 1168, 1092, 1001, 928, 894, 863 cm⁻¹. (EIMS) m/e (rel intensity): 242 (<1), 227 (11), 171 (19), 113 (64), 85 (48), 71 (100). Anal. Calcd for C13H22O4: C, 64.44; H, 9.15. Found: C, 64.60: H. 9.10.

(-)-(4*R*,5*R*)-4,5-Bis[(1*R*)-1-methoxy-2-propenyl]-2,2-dimethyl-1,3-dioxolane (3b). The application of the abovedescribed procedure, starting from the diethyl D-tartrate, led to the enantiopure compound 3b. $[\alpha]_D^{26}$ -10.2 (CHCl₃, *c* 1.130).

(-)-(3S)-3-{(4S,5S)-5-[(1S)-3-hydroxy-1-methoxypropyl]-2,2-dimethyl-1,3-dioxolan-4-yl}-3-methoxy-1-propanol (4a). To 242 mg (1 mmol) of 3a, dissolved in 5 mL of n-hexane and cooled at 0–5 °C, was added 78 μ L (0.83 mmol) of BH₃·Me₂S maintaining the temperature at 5 °C. To the reaction mixture, stirred for 3 h at room temperature, was added 2 mL of EtOH and 0.6 mL of 3 N NaOH. After the solution was cooled at 0-5 °C, 270 μ L of 30% H₂O₂ was added dropwise without exceeding the internal temperature of 35 °C. The mixture was refluxed for 3 h then, after cooling, was poured into 1 mL of cold brine. The aqueous phase was extracted three time with 10 mL of CH₂-Cl₂ and the combined organic layers were dried on MgSO₄, filtered ,and evaporated to dryness to give 180 mg (65%) of 4a. The crude product could be used without further purification. A sample was purified by flash chromatography (SiO₂-Et₂O/ MeOH 9/1) to afford the analitically pure title compound as a white oil. ¹H NMR: δ 3.97 (m, 2H), 3.73 (t, 4H, J = 5.86 Hz), 3.45 (m, 2H), 3.40 (s, 6H), 2.92 (br s, 2H), 1.81 (m, 4H), 1.35 (s, 6H). ¹³C NMR: δ 110.2, 81.1, 79.6, 60.0, 58.4, 32.9, 27.5. $[\alpha]_D^{20}$ 46.5 (CHCl₃; c 1.381). IR (neat): 3417, 2974, 2930, 2827, 1650, 1454, 1373, 1252, 1215, 1167, 1078, 890, 865, 806 $\rm cm^{-1}.$ (EIMS) m/e (rel intensity): 189 (7), 157 (10), 131 (100), 113 (18), 99 (23), 89 (52), 85 (13), 71 (28), 59 (54). Anal. Calcd for C₁₃H₂₆O₆: C, 56.10; H, 9.42. Found: C, 56.22; H, 9.39.

(+)-(3*R*)-3-{(4*R*,5*R*)-5-[(1*R*)-3-Hydroxy-1-methoxypropyl]-2,2-dimethyl-1,3-dioxolan-4-yl}-3-methoxy-1-propanol (4b). The title compound was obtained, analogously to 4a, from 3b. $[\alpha]_{D}^{20}$ +46.4 (CHCl₃; *c* 1.272).

(3.5)-3-{(4.5,5.5)-5-[(1.5)-3-(4-methylbenzenesulfonate)-1methoxypropyl]-2,2-dimethyl-1,3-dioxolan-4-yl}-3-methoxypropyl 4-methylbenzenesulfonate (5a). To 259 mg (0.93 mmol) of 4a, dissolved in 2 mL of dry pyridine and cooled at 0 °C, was added 530 mg (2.78 mmol) of *p*-toluenesulfonyl chloride. After 14 h at 5 °C the solution was poured into 3 mL of H₂O and extracted with CH₂Cl₂. By evaporation of the dried organic layer 516 mg (95%) of 5a was obtained as a white oil and used without further purification. ¹H NMR: δ 7.75 (d, 4H), 7.30 (d, 4H), 4.15 (m, 4H), 3.77 (m, 2H), 3.28 (m, 2H), 3.30 (s, 6H), 2.40 (s, 6H), 1.86 (m, 4H), 1.28 (s, 6H). ¹³C NMR: δ 145.3, 133.5, 130.4, 128.4, 112.0, 79.6, 78.5, 67.7, 58.7, 30.3, 27.4, 22.1. IR (neat): 3063, 2982, 2827, 1922, 1805, 1598, 1454, 1359, 1174, 1097, 960, 872, 835, 813, 761, 735, 662 cm⁻¹. (EIMS) *m/e* (rel intensity): 586 (<1), 343 (8), 186 (12), 155 (23), 113 (24), 101 (48), 91 (70), 71 (100). Anal. Calcd for $C_{27}H_{38}O_{10}S_2$: C, 55.27; H, 6.53. Found: C, 55.21; H, 6.55.

(3*R*)-3-{(4*R*,5*R*)-5-[(1*R*)-3-(4-Methylbenzenesulfonate)-1methoxypropyl]-2,2-dimethyl-1,3-dioxolan-4-yl}-3-methoxypropyl 4-Methylbenzenesulfonate (5b). The title compound was synthesized as described for the above-reported enantiomer 5a.

(-)-(3a*S*,4*S*,10*S*,10a*S*)-4,10-Dimethoxy-2,2-dimethyloctahydrothionino[5,6-d][1,3]dioxole (6a). To 100 mL of absolute EtOH, bubbled at reflux with N₂ for 10 min, was added 637 mg (2.65 mmol) of Na₂S·9H₂O. In this solution was slowly added dropwise and under reflux 518 mg (0.89 mmol) of 5a dissolved in 80 mL of absolute EtOH. The reaction mixture was successively refluxed for 48 h and then evaporated. The residue was finally treated with 10 mL of H₂O and extracted with CH₂-Cl₂. The evaporation of the dried organic layer gave a crude product that was purified by flash chromatography (SiO₂-light petroleum/Et₂O; 2/1.6) obtaining 159 mg (65%) of **6a** as a white solid, mp 84–85 °C. ¹H NMR: δ 4.53 (br s, 2H), 3.59 (m, 2H), 3.38 (s, 6H), 2.76 (m, 2H), 2.50 (m, 2H), 1.98 (m, 4H), 1.40 (s, 6H).¹³C NMR: δ 107.9, 79.5, 76.9, 58.5, 30.9, 28.7, 27.1. $[\alpha]_D^{20}$ -12.2 (CHCl₃, c 1.081). IR (KBr) 2982, 2930, 2863, 2827, 1458, 1447, 1373, 1359, 1244, 1214, 1167, 1108, 1089, 1052, 850 cm $^{-1}$. (EIMS) m/e (rel intensity): 276(4), 261 (21), 218 (18), 203 (16), 117 (18), 85 (41), 72 (100). Anal. Calcd for C₁₃H₂₄O₄S: C, 56.49; H, 8.75. Found: C, 56.40; H, 8.73.

(+)-(3a*R*,4*R*,10*R*,10a*R*)-4,10-Dimethoxy-2,2-dimethyloctahydrothionino[5,6-*d*][1,3]dioxole (6b). The title compound was obtained with use of the same procedure adopted for the synthesis of 6a. $[\alpha]_{\rm D}^{20}$ +12.2 (CHCl₃, *c* 1.077).

(-)-(**4***S*,**5***R*,**6***R*,**7***S*)-**4**,**7**-Dimethoxy-5,**6**-thionanediol (7a). To 276 mg (1 mmol) of **6a**, dissolved in 3.5 mL of CH₃CN, was added 2 mL of 0.1 N H₂SO₄. The reaction mixture was stirred at 50 °C for 30 min, neutralized with Na₂CO₃, and evaporated. The residue extracted with CH₂Cl₂ gave 231 mg (98%) of crude **7a**, which was purified by flash chromatography (SiO₂-CH₂Cl₂/ CH₃OH 30/0.5) obtaining a colorless oil. ¹H NMR (CD₃OD): δ 4.22 (br s, 2H), 3.60 (m, 2H), 3.40 (s, 6H), 2.82 (m, 2H), 2.43 (m, 2H), 2.07 (m, 4H). ¹³C NMR (CD₃OD): δ 83.8, 73.4, 58.0, 33.4, 29.6. [α]_D²⁰ - 45.0 (CH₃OH, *c* 1.185). IR (neat): 3432, 2930, 2819, 2539, 1451, 1370, 1263, 1093, 938, 798 cm⁻¹. (EIMS) *m/e* (rel intensity): 218 (17), 187 (37), 146 (16), 115 (12), 87 (22), 72 (100), 71 (75). Anal. Calcd for C₁₀H₂₀O₄S: C, 50.82; H, 8.53. Found: C, 50.75; H, 8.55.

(+)-(**4***R*,5*S*,6*S*,7*R*)-**4**,7-Dimethoxy-5,6-thionanediol (7b). This compound was obtained analogously to **7a**. $[\alpha]_D^{20} + 44.9$ (CH₃OH, *c* 1.164).

Synthesis of the Bicyclic Sulfonium Salts (1S,7S,8S,8aS)-8-Hydroxy-1,7-dimethoxyoctahydrothieno-[1,2-a]thiopyranium Iodide (8a). To 236 mg (1 mmol) of 7a dissolved in 2 mL of dry CH₃CN was added 165 mg (1,1 mmol) of dried NaI, followed by dropwise addition of 140 μ L (1.1 mmol) of freshly distilled Me₃ŠiI. The mixture was refluxed for 2 h and after cooling to room temperature, a few drops of aqueous 10% NH₄Cl was added. The organic layer, obtained by extraction with CH₂Cl₂, was sequentially washed with 5 mL of aqueous 20% $Na_2S_2O_3$ and brine. The evaporation of the dried organic layer gave 311 mg (90%) of the title compound (8a) as a pale yellow oil that darkened on standing.¹H NMR (CD₃OD): δ 4.62 (m, 1H), 4.55 (m, 1H), 4.04 (m, 1H), 3.95-3.52 (m, 3H), 3.44 (s, 3H), 3.40 (s, 3H), 3.35 (m, 2H), 2.83 (dd, 1H, J = 7.16, 14.86 Hz), 2.15 (m, 3H). ¹³C NMR ((CD₃)₂CO): δ 85.0, 77.3, 66.4, 65.6, 57.5, 57.0, 44.6, 41.7, 33.1, 22.8. ES+ MS 219, ES-MS 127. Anal. Calcd for C₁₀H₁₉IO₃S: C, 34.69; H, 5.53. Found: C, 34.75; H, 5.55.

(1*R*,7*R*,8*R*,8*aR*)-8-Hydroxy-1,7-dimethoxyoctahydrothieno[1,2-*a*]thiopyranium Iodide (8b). 8b was synthesized with use of the same procedure adopted for 8*a*.

(+)-(1*S*,7*S*,8*S*,8*aS*)-8-Hydroxy-1,7-dimethoxyoctahydrothieno[1,2-*a*]thiopyranium Trifluoroacetate (9a). To 236 mg (1 mmol) of **6a** dissolved in 2 mL of CH₃CN was added 200 μ L of CF₃COOH to obtain **9a**. The reaction mixture was heated at 50 °C for 2 h then directly evaporated to gave a crude

⁽¹²⁾ Jorgensen, M.; Iversen, E. H.; Paulsen, A. L.; Madsen, R. J. Org. Chem. 2001, 66, 4630.

JOC Note

product that was purified by dissolution in CH_2Cl_2 and precipitation with light petroleum obtaining 299 mg (90%) of **9a** as a colorless viscous oil. ^{1}H NMR and ^{13}C NMR are identical with those reported for **8a**. $[\alpha]_D{}^{20}$ +17.9 (CH₃OH, *c* 1.635). IR (Nujol): 3417, 2546, 1701, 1133, 990. ES^+ MS 219, ES-MS 113. Anal. Calcd for $C_{12}H_{19}F_3O_5S$: C, 43.37; H, 5.76. Found: C, 43.40; H, 5.78.

(-)-(1*R*,7*R*,8*R*,8a*R*)-8-Hydroxy-1,7-dimethoxyoctahydrothieno[1,2-*a*]thiopyranium trifluoroacetate (9b). This bicyclic compound was obtained analogously to $\boldsymbol{9a}.~[\alpha]_D{}^{20}$ –17.8 (CH_3OH, c 1.433).

Acknowledgment. This work has been supported by the National Project "Stereoselezione in Chimica Organica. Metodologie ed Applicazioni, 2002–2003". JO020511Z